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Abstract

The purpose of this paper is to evaluate the accuracy of the mesoscopic approach proposed by Février et al. [P. Février,
0. Simonin, K.D. Squires, Partitioning of particle velocities in gas—solid turbulent flows into a continuous field and a spa-
tially uncorrelated random distribution: theoretical formalism and numerical study, J. Fluid Mech. 533 (2005) 1-46] by
comparison against the Lagrangian approach for the simulation of an ensemble of non-colliding particles suspended in
a decaying homogeneous isotropic turbulence given by DNS. The mesoscopic Eulerian approach involves to solve equa-
tions for a few particle PDF moments: number density, mesoscopic velocity, and random uncorrelated kinetic energy
(RUE), derived from particle flow ensemble averaging conditioned by the turbulent fluid flow realization. In addition, vis-
cosity and diffusivity closure assumptions are used to compute the unknown higher order moments which represent the
mesoscopic velocity and RUE transport by the uncorrelated velocity component. A detailed comparison between the
two approaches is carried out for two different values of the Stokes number based on the initial fluid Kolmogorov time
scale, Stx = 0.17 and 2.2. In order to perform reliable comparisons for the RUE local instantaneous distribution and
for the mesoscopic kinetic energy spectrum, the error due to the computation method of mesoscopic quantities from
Lagrangian simulation results is evaluated and minimized. A very good agreement is found between the mesoscopic Eule-
rian and Lagrangian predictions for the small particle Stokes number case corresponding to the smallest particle inertia.
For larger particle inertia, a bulk viscous term is included in the mesoscopic velocity governing equation to avoid spurious
spatial oscillation that may arise due to the inability of the numerical scheme to resolve sharp number density gradients. As
a consequence, for Stx = 2.2, particle number density and RUE spatial distribution predicted by the mesoscopic Eulerian
approach are more smooth with respect to the ones measured from the Lagrangian simulations results. Similarly, the Eule-
rian approach underestimates the mesoscopic kinetic energy for the high wavenumber modes while the agreement remains
very good for the low wavenumber modes. For both cases, the mesoscopic Eulerian approach provides a good prediction
of the time dependent particle and fluid-particle velocity correlations measured by spatial averaging in the whole compu-
tational domain.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical simulation of particle laden flows using a Lagrangian approach, also called discrete particle sim-
ulation (DPS) approach, is a very powerful tool to study collective physical phenomena such as particle dis-
persion, preferential concentration, inter-particle collision, etc. Nevertheless, in real flows the full particle
number cannot be accounted for and, usually, alternative approaches are needed to reduce the numerical cost.
In such cases, the Eulerian treatment of the particulate phase may provide a convenient effective treatment.
However, the derivation and closure of accurate local instantaneous Eulerian equations is still an open
research subject. For example, Druzhinin and Elghobashi [2] derive Eulerian transport equation for the dis-
persed phase concentration and velocity by spatial averaging over a scale of the order of the Kolmogorov
length scale, assumed to be larger than the particle diameter and inter-particle distance. In the frame of the
equilibrium approach, the particle velocity can be written as a given algebraic function of the fluid velocity
from a Taylor expansion of the particle velocity in terms of small particle response time to fluid characteristic
time scale ratio. Validation of such an approach from DNS + DPS results was performed in homogeneous
isotropic turbulence (HIT) [3] and homogeneous turbulent shear flow [4]. Though, a crucial assumption of
the above approaches, the particle velocity uniqueness at a given position, fails when the particle relaxation
time is larger than the Kolmogorov time scale, due to the crossing of particle trajectories.

To overcome this difficulty, Février et al. [1], proposed a probability density function (PDF) approach
based on a conditional ensemble average of the particle properties for a given turbulent fluid flow realization.
In such an approach, any discrete particle velocity may be separated into two contributions: an Eulerian veloc-
ity field, the mesoscopic velocity field (MVF) shared by all the particle realizations, and a Lagrangian random
distribution, the random uncorrelated velocity (RUYV), spatially uncorrelated and which accounts for the par-
ticle trajectory crossing. The conditional particle velocity PDF obeys a Boltzmann-type kinetic equation
accounting for external forces acting on the particles and inter-particle collisions. The moments of the particle
PDF are mesoscopic Eulerian quantities which obey transport equations derived by integration from the
kinetic equation, following the same methodology as for the derivation of the Navier—Stokes equations in
the frame of kinetic theory [5]. So, Février et al. [1] derived transport equations for particle number density,
mesoscopic velocity, and random uncorrelated kinetic energy (RUE) and Simonin et al. [6] proposed, as a first
approximation, a viscosity assumption to model the random uncorrelated kinetic stresses.

The mesoscopic approach was evaluated using a priori test from DPS coupled with DNS or LES of forced
homogeneous isotropic turbulence [7] and fully developed channel flow [8]. In contrast, this study is the first
attempt to solve the set of equations of the mesoscopic Eulerian approach allowing ““a posteriori” quantitative
comparison of the model predictions with reference results obtained from discrete particle simulation (DPS)
coupled with DNS of an homogeneous isotropic decaying gaseous turbulence. In the present study, interaction
forces are limited to Stokes drag and inter-particle collision effects are not taken into account. Particles are of
identical size and the gravity force is not considered. However, the extension to evaporating droplets, gravity
force and non-linear drag is not in conflict with the derivation methodology of the Eulerian field equations.
Also the introduction of inter-particle collisions in dilute gas-particle mixture is without major difficulties
[6]. The drastic assumptions are chosen in order not to focus this study on the effects related to particle tur-
bulence dynamic interaction.

Comparisons between Eulerian and Lagrangian simulation results are performed considering several particle
variables. First, Lagrangian statistical properties of the dispersed phase such as particle kinetic energy and par-
ticle-fluid velocity correlation are investigated. Second, local instantaneous mesoscopic Eulerian fields such as
particle number density 7,, mesoscopic velocity i, ;, and random uncorrelated kinetic energy 5ép fields are mea-
sured from both the Lagrangian and Eulerian simulations and compared. Finally, the mesoscopic particle kinetic
energy spectra E, (k) computed from both Lagrangian and Eulerian simulation results are compared.

But to allow reliable comparisons between DPS and mesoscopic Eulerian simulation results an accurate
spatial filtering procedure is needed to project Lagrangian quantities on a fixed grid and to compute the Eule-
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rian fields (Fig. 1). To validate the proposed method, several projection methods are tested on a one-dimen-
sional synthetic case. In the case of non-interacting particles, the number of particles per cell for a given carrier
phase realization is not limited, a Gaussian projector is then validated from the kinetic energy spectrum using
DPS results with different simulated particle numbers.

The paper is organised as follow: the mesoscopic Eulerian approach is presented in Section 2, then the pro-
jection method to compute mesoscopic Eulerian field from DPS results is described and validated in Section 3,
Section 4 concerns the numerical test case description, finally Eulerian simulation predictions are presented
and compared with DPS results in Section 5.

2. The mesoscopic Eulerian approach

To derive local instantaneous particle Eulerian equations in dilute flows (without turbulence modification
by the particles), Février et al. [1,7,6] introduce an ensemble average over dispersed phase realizations (-) con-
ditioned by any given carrier phase realization. Such an averaging procedure leads to a conditional particle

velocity PDF f{1)(c,;x, 7|H),
T (ep 15 He) = (W) (e, x, 1) | H) (1)

WE,” is the fine grid PDF of the realizations of position and velocity in time of any given particle [9] and Hy
represents the given carrier fluid flow realization. This function represents the local instantaneous probable
number density of particles with a translation velocity u, = ¢, at the location x for a given time ¢. The con-
ditional PDF obeys a Boltzmann-type kinetic equation, which accounts for momentum exchange with the car-
rier fluid, gravity force, and particle—particle collisions. Thus, neglecting the collision effect, the conditional
PDF equation takes the form:

0. 0 v 0 [Fpyv

el — .. R pull %) =0 2
atfp " 0x; “oufv ¥ ey {mp fp} @)
The PDF equation can be used to derive transport equations for the moments (number density 7,, mesoscopic
velocity iy, ...) of the dispersed phase following kinetic theory methodology [5].

2.1. Transport equations for particle properties
Instead of resolving directly the Boltzmann-type kinetic equation (2) one may compute only some first

order moments of the particle velocity PDF from separate Eulerian transport equations with constitutive rela-
tions for the unknown needed higher order moments. Such a approach is a transposition of the classical
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Fig. 1. Methodology for comparison of DPS to Eulerian simulation approaches.
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kinetic theory moment method for dilute gases which involves the computation of the density, velocity and
temperature using the Navier—Stokes and energy transport equations. So, integration over the particle velocity
phase space yields statistical “mesoscopic” properties of the dispersed phase. The “mesoscopic” particle num-
ber density is written as

o= [ 7)) x.t5815)dey ()
All the mesoscopic moments of the dispersed phase are obtained by integration of velocity component poly-
nomials, ®(c,) = ¢ ch ¢, - -, multiplied by the conditional PDF:
1 y
= (0lH), = [ @iy x5 H ey )
P

With this definition one may define a local instantaneous particulate velocity field, which is here named mes-
oscopic Eulerian particle velocity field

u,(x, 6, Hy) = 1 /cpf (¢p, X, t; Hy)de, (5)

For simplicity, the dependence of the above variables on the single carrier Phase realization H; is not written
explicitly further in the paper. Then, the velocity of any discrete particle u,; can be decomposed in the local
instantaneous mesoscopic Eulerian velocity at the particle position i, and a Lagrangian component (3u

W) (1) = ity (x0(1),0) + Sull) (1) (6)

The Lagrangian component 5u : of the discrete particle velocity is referred as the random spatially uncorre-
lated velocity (RUV)? component Indeed, as shown by Février et al. [1], 5uplfl? between any two different par-
ticles are uncorrelated, therefore the two-point particle velocity correlation,

OR,;i(x,x') =0 V(x,x) if [x—x'|>0 (7)
where
OR, (X, X') = // [epi — (X, 1)][c,; — ﬁp,j(x/,t)]fv'f)(cp,c;,x,x/,t; Hy)dc,de, (8)

This uncorrelated Lagrangian velocity distribution is similar to the peculiar velocity distribution in the frame-
work of kinetic theory of dilute gases which obeys the molecular chaos assumption. Nevertheless it has to be
pointed out that the particle position distribution is not as random due to the segregation mechanism and the
uncorrelated velocity distribution is not Gaussian.

Using standard kinetic theory method [5], transport equations of particle number density and mesoscopic
Eulerian velocity are derived by integration of the Boltzmann-type equation (2) over the particle velocity
space:

0 0 ..

R p+a gty =0 9)
L, 0. L. 0. 7 0 . ..

”pa”pji + ”p”pja_xj”pJ == T_: [ty — up,] + a_xjnpéap,i/ (10)

where the first term on the right hand side of Eq. (10) represents the drag force, with u; the carrier phase
velocity at the particle position. 7, is the particle relaxation time modelled using Stokes drag:
2
Ppd
_ 11
TP 18 e ( )

2 Random spatially uncorrelated velocity (RUV) has been referred to as Quasi Brownian Motion (QBM) in previous publications. We
agree that the expression Quasi Brownian is misleading since the physical interpretation of the uncorrelated motion is not of Brownian
nature.
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Here p,, is the density of the particle, d is the particle diameter and ; is the dynamic viscosity of the carrier
phase. The stress term in Eq. (10) arises from the integration of the convective term in the PDF transport
equation (2):

00y = — /(Cpi — i) (cp, — Lu‘p;i)/?](;”(cm x,t; Hr)de, (12)
= _’le<5”p,55”p,j|Hf>p (13)

This term account for the transport of mesoscopic momentum due to the uncorrelated part of the particle
velocity.

The time dependent fields of the particle number density and mesoscopic velocity can be predicted using
Egs. (9) and (10). It is however necessary to model the second-order particle PDF moments, or RUV Kkinetic
stress tensor, dd,; in terms of computed variables. One possibility is to solve separate transport equations for
the components of the RUV kinetic stress tensor. Such equations can be derived from the PDF equation but
this method shifts the difficulty in finding constitutive relations for the third-order particle PDF moments, or
triple RUV correlations, and increases drastically the numerical cost by solving six additional transport equa-
tions. Alternatively, one can try to model directly the second-order RUV correlations using computed meso-
scopic variables as performed in the frame of kinetic theory of dilute gases when writing the viscosity
assumption in the Navier—Stokes equation.

2.2. Random uncorrelated velocity (RUV') correlation tensor modelling

When the Euler or Navier-Stokes equations are derived from kinetic gas theory, the trace of (ou, 0uy), is
interpreted as temperature (ignoring the Boltzmann constant and molecular mass) and defined as the uncor-
related part of the molecular kinetic energy. By analogy, the random uncorrelated particle kinetic energy
(RUE) is defined as half the trace of da,;:

o 1
50p = 5 <(3up>,~5up‘,-|Hf>p (14)

In the frame of kinetic theory of dilute gas, pressure is linked to density and temperature by an equation of
state. In the same manner, a random uncorrelated pressure (RUP) may be defined by the product of uncor-
related kinetic energy and particle number density:

P, :ﬁpgaép (15)

With such a definition, the velocity stress tensor may be separated into an isotropic part corresponding to the
RUP and a deviatoric trace-free term 67,

ip0Gyi; = —Ppdij + 0Ty, (16)
Then, the momentum transport equation (10) is written,

., 0 o . Ty ¢ 0 0

p 3, tpi + ”p”pa/@“p,i == r_: [itp; — ugs] — a_x,.PP + a_xjéfp,tii (17)

and, in first approximation, the deviatoric stress tensor is written in terms of the mesoscopic rate-of-strain ten-
sor and a dynamic viscosity,

ity | Dl 2 ity
5t =y [CMpi | OUpy 2 Olhpi o
o “p<ax_,- o 3 0 ’f)

(18)

In such an approach the particle dynamic viscosity is written u, = 1/ 3fzprp5ép [6] where 1, is the particle relax-
ation time. This expression can be obtained using the transport equation for the deviatoric part of the velocity
variance tensor (du,;0u, ;) and supposing weak shear [10]. This closure model for the dynamic viscosity cor-

responds to a characteristic mixing length proportional to 4, o 7,4/2/ 3(Sép which is the stopping distance due
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to drag of a particle with relative velocity du, = 1/2/ 35(v9p. The closure model (Eq. (18)) and the dynamic vis-

cosity u, require the knowledge of the RUE 5ép. Modelling approaches for this quantity are developed in the
next section.

2.3. Random uncorrelated kinetic energy (RUE) modelling

From the PDF equation (Eq. (2)) a general RUE transport equation can be obtained by integration from
the PDF equation (2) in the same way than temperature equation in the frame of kinetic theory [5]
0., v 9 .. w Ry v . ,
&I’lpégp + §npup,j()0p = fZT—pé)Hp — (Ppéij — 5Tp,ij) K — & ? <5up1,-5up,,-5upﬁj|Hf>p (19)
J p J J
The first rhs. term account for the RUE dissipation by drag force, the second is the compressibility effect and
production due to mesoscopic velocity shear, the last term is the diffusion by RUV. In this equation, the devi-
atoric stress tensor 7, ; is modelled using the viscosity model from Eq. (18), already presented for the momen-
tum equation (Eq. (16)). Third order RUV correlations are modelled by a diffusion term similar to the
temperature Fick law which can be derived, in the frame of kinetic theory approach for particulate flows
[11], from the third-order correlation transport equation as,

v

7 0 -

TP <5up,i5up7,-5up.j|Hf>p = —Kpa—xj59p (20)
where the diffusivity coefficient is x, = 5/3it,7,00,.
3. Computation of Eulerian mesoscopic fields from discrete particle simulation results

In DPS approach every single k-particle follows its individual trajectory x](,k,)(t) and has its own particle
velocity ugf,«)(t). Discrete particle position and velocity are given by the simple set of differential equations

d

3 = (1) (21)

doo_ Lo wp gy, ® 2

) = s (X0 (0), 1) — ) 0) (22)
p

Special care has to be taken when evaluating the carrier phase velocity uf(xg‘), t) at the particle location for the
computation of Stokes drag law. In the present study high order interpolation methods (third-order Lagrange
polynomials) are used to ensure a minimal numerical error [12].

The Eulerian model presented above is based, in theory, on an ensemble average over all particle flow real-
izations for a given fluid flow realization. Without inter-particle influences (directly by collisions, or through a
modification of the fluid flow due to particles), an average over the Lagrangian quantities of a large number of
particle is equivalent to the statistical conditional average on several particle realizations of few number of
particles. In addition, interpretation of Lagrangian results in term of Eulerian mesoscopic fields such as par-
ticle number density, mesoscopic velocity or RUE requires the use of a projection procedure based on volume
filtering method.

In this study, the DPS is performed with a large number of particles and field properties are obtained by
projection on a regular grid with a given cell size Ax. Such projection procedure from Lagrangian to Eulerian
quantities are widely used to handle the two-way coupling in DPS approach [13-16]. The salient feature of the
configuration is the discontinuous distribution of the Lagrangian velocities due to the particle RUV. A control
volume V', around a computational node at the location x is defined. V. should be chosen small enough with
respect to the characteristic length scale of variation of the mesoscopic variables but sufficiently large to have
enough particles for an accurate averaging. Mesoscopic fields such as particle number density 7, mesoscopic
velocity @, and random uncorrelated energy 60, are measured in DPS as:

(1) = o Sowx0) —x) (23)

P
©
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Tip (X, 0)iip (X, 1) = Vi > w(xP (1) — x)ull) (1) (24)
(6,30 (5,1) = 5 5 S wxi () = W OF = 35,02 . (29)

where w(xg‘)(t) — x) is a weight function. Definitions of several different projections are presented in Table 1.
The top-hat and volumic (based on Schoenberg M, spline) projectors are written for two different widths, a
Gaussian projector is also presented. We restrict our attention to second-order space accurate projectors
for two reasons. Firstly, higher order projector weight function should have negative loops leading to unphys-
ical negative particle number density values when very few particles are present. Secondly, the corresponding
convergence rate in terms of the particle number is slower [16]. Integral of the different projector kernels over
the control volume is unity to ensure the globally (ie. for infinite particle number) quantity mean conservation
by projection. It must be noticed that the box, large box, and large volumic projector are also locally mean-
conservative for finite particle number densities [14]. The characteristic length scale of the projector is evalu-
ated by doubling the standard deviation of the weight function g:

1
& = V. / Ixp — X" w(xp — X) doxp dxp 2 dixp 3 2
c JV,

Leading to the characteristic length scale classification of the retained projectors:

Large box > Large volumic > Box ~ Gaussian > Volumic (27)

3.1. Validation on 1D synthetic case

Tests of these projection procedures were performed on one-dimensional synthetic case. The box, volumic,
and Gaussian 1D projection kernels are presented in Fig. 2. N, particles are randomly distributed on a one-
dimensional grid with an equidistant node spacing Ax of N nodes. The mean particle number per cell is
N,/N = (n,)Ax in 1D. The particle distribution is projected on the grid (Eq. (23)) to obtain the mesoscopic
particle number density. The conservation of mean quantities by Gaussian and volumic projection is evaluated
for the mean projected number density (71,) (Fig. 3). As expected the associated error is decreasing when the
mean particle number per cell is increasing. It can easily be shown that this bias is avoided in the case of
equally spaced particles and is due to non homogeneous particle repartition in every projection grid cell.

We focus now our attention on kinetic quantities. A turbulent-like velocity field (i,) and a Gaussian uncor-
related white noise (5u§f)) are given to the randomly placed particles:

) = ip(x) + ou) %)

The velocity field follows a Passot—-Pouquet type spectrum defined on 32 modes (presented in the study), but
tests using a —5/3 decrease rate spectrum show similar results. The energy of the noise has been chosen to be
30% of the mesoscopic energy, which correspond to the maximum of the particle random uncorrelated energy

Table 1
Projection procedure definitions in 3D
Projection Control volume Weight function Characteristic length
Ve w(xy! =) 2
Box (Ax)? 1 Ax
Large box (2Ax)° 1 W 2Ax
: 3 3 Xpi i
Volumic (Ax) [T (2 —2°K%n > %
. 3 13 ) =]
Large volumic (2Ax) I V2Ax

3 3 ® )
Gaussian (2Ax)° (24x)° (£ );exp <7 Sixp x| > (1 - f;ﬁ?;a))m ~ Ax
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Fig. 2. Weight function of the different projection in 1D.
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Fig. 3. Evolution of the conservation of the projected particle number with the mean particle number per cell (error = ({(7i,) — (n,))*/
(np)z) for the 1D synthetic case.

measured by Février et al. [1]in stationary homogeneous isotropic turbulence. Particle properties are then pro-
jected on a one-dimensional 64 node grid of length 2z. Substituting Eq. (28) in Eq. (24) leads to:

o 1 . 1
Tipll, = 7 Xk: w(ug‘) - x)up(xg‘)) + 7 Zk: w(xg‘) - x)éug” (29)
Ayl = Ayl + fp00 (30)

To identify the projected velocity #, to the mesoscopic velocity iz, the projection procedure must be able to
eliminate the noise du, and must not affect the mesoscopic velocity field. The difference between the projected
velocity fields and the non projected mesoscopic velocity distribution is evaluated by the quadratic error:
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o 2

Error(¢) — <(¢(X) — ug(x)) > (31)

(itp (x)7)

where ¢ is the field to be tested, ie. projected velocity with added noise %, or without noise i#,. The same
Lagrangian field is projected with the different projections. To obtain statistical convergence, average is per-
formed on 5000 different realizations of the velocity field. This procedure is repeated for several values of the
particle number per cell of the projection grid, from one to thousand. Fig. 4 shows the dependence of the
velocity projection error (computed from Eq. (31) with ¢ = i,) on the particle number per cell for the different
projection procedures. The error decreases when increasing the particle number, but a systematic error occurs
even for a large particle number density. For more than 10 particles per cell, the related error arises in decreas-
ing order from the large box projector, the large volumetric filter, the box filter, and the volumetric filter. In
the noisy case (Fig. 5), i.e. ¢ =%, in Eq. (31), more than 100 particles per cell are needed to reach the system-

10° . .
B—H Box
E—+ Large box
A—aA Volumic
A—4A Large volumic
5
1
o
10-“ L L
1 10 100 1000
<nF>Ax
10° : :
=—u Box
A—aA Volumic
&—© Gaussian
107 b
g 107t
L]
10° L
10‘4 L i
1 10 100 1000

<np>Ax

Fig. 4. Dependence of velocity quadratic error (given by Eq. (31)) due to the projection procedure on the particle number per cell for 1D
synthetic case. Particle velocity distribution is given from the interpolation of a continuous turbulent field on the particle position. Upper
figure: comparison between box, large box, volumic, and large volumic projections. Lower figure: comparison between box, volumic, and
Gaussian projections at the bottom.
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atic projector error level, but the projector efficiency classification remains the same. In addition to the statis-
tical error due to the finite number of particles in the averaging cell, Boivin et al. [14] showed that such pro-
jection procedures are equivalent to a filtering of the length scales smaller than the control volume size which
limit high gradient values. This spatial error can be limited by using smaller control volume, but this increases
however the statistical error due to particle number. A different alternative would be to use a projection kernel
with a smaller characteristic length scale. It can be noticed that volumic-type projectors returns better results
than box-type projectors. A compromise between small systematic error and accuracy for small particle num-
ber density is to use the Gaussian projector on a large control volume (see Table 1) but having the box pro-
jection characteristic length scale. The Gaussian projector error is comparable to the box projection error for
high particle numbers and to the large box for small particle number.

To analyse more in details the projection error, the energy spectra of it,, i, ou,, and i, are presented in
Figs. 6-8 with the Gaussian projector for 2, 20, and 200 mean particle number per cell of the projection grid.
For all the cases the projected mesoscopic velocity energy (Fig. 6) spectra follow the one of the mesoscopic
velocity at large scales. The projected mesoscopic velocity (i,) energy spectra for the 200 mean particle num-

10° : :
B— Box
O—=a Large box
A—aA Volumic
10 L /5s—= Large volumic
2 107}
o
107
10-“ L L
1 10 100 1000
<nP>Ax
10° : :
=—a Box
A—aA Volumic
&—€ Gaussian
107 |
g 1wl
L]
10° b
10-4 L !
1 10 100 1000
<nP>Ax

Fig. 5. Same caption as Fig. 4. Particle velocity is the velocity of the continuous field at their location with an added Gaussian white noise
of 30% energy.
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ber per cell case underestimates the energy at small scales comparing to the i, energy spectra. This behaviour
is the mark of the spatial error detailed before. In the case of two particles per cell case, the spectrum presents
an unphysical overestimation of the small scale energy. This effect is avoided by increasing the mean particle
number density, n, so that the spectra for 20 and 200 particles per cell are nearly identical for all waves num-
bers. For equally spaced particles, the error is removed, even for the case with the lowest particle number per
cell (not presented here) proving that the overestimation of the velocity spectrum induced by the projection
procedure is due to the random repartition of the particles.

Fig. 7 shows the energy spectra of the projected noise (5_up) These spectra are mainly flat and their average
energy level decreases quasi-linearly when the particle number density increases. The noise spectra energy lev-
els are comparable with the correlated energy ones. More precisely, this level can be evaluated. The energy

10 T
O <n >Ax=2
+ <n>Ax=20
107" ¥ <n >Ax=200 |
S
107 ¢ E
o q
[ k.
=
e
8§ 10° .
=
o
107 F E
x
10°° :
1 10 100

Fig. 6. Dependence of the projected mesoscopic energy spectra using the Gaussian projector on the mean number of particles per cell. 1D

synthetic case. The line is the mesoscopic energy spectra.

10° :
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= B R TN CIU | LU 0 RO T VDRI O
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Yo e X X 3 M XK RS — — — — — —
107° -
1 10 100
k

Fig. 7. Dependence of the projected noise energy spectra using the Gaussian projector on the mean number of particles per cell. 1D
synthetic case. The continuous line is the mesoscopic energy spectra. The horizontal dashed lines correspond to the noise spectrum models

(Eq. (33)).



A. Kaufmann et al. | Journal of Computational Physics 227 (2008) 6448—6472 6459

10°
O<np>Ax=2
+<r‘|p>Ax=2O
10" ><<np>Ax=200 4
s
1
& 10° : E
2 S T S Q%mu ,,,,,,
® -
p
g 1w” .
3 B
L
107 F % E
107° L
1 10 100
k

Fig. 8. Dependence of the projected mesoscopic energy spectra with added noise using the Gaussian projector on the mean number of
particles per cell. 1D synthetic case. The continuous line is the mesoscopic energy spectra. The horizontal dashed lines correspond to the

noise spectrum models (Eq. (33)).

spectrum of a discrete white noise on N, equally spaced particles is constant up to the Nyquist frequency
(Np/2 = (n,)NAx/2). Considering that the spectrum integral gives the random uncorrelated energy, the energy

spectrum of the discrete noise is
NAx (N B
Esy (k) = P (7;) - 1) oq; (32)

1

E(Sup(k) ~ n(np> (sqg (33)

For non-homogeneous particle distribution, Eq. (33) can be used as a noise spectrum level estimation. Com-
paring the projected noise spectra level with the non projected noise model level, the particle density effect is
recovered and the mean level too (about 2% error). The projection procedure is just filtering the noise and cut
off all the components with wave numbers larger than N/2.

We now consider the projection of mesoscopic velocity with added noise (Fig. 8). At small scales the energy
spectrum of i, obtained with 2 or 20 mean particle number per cell follows the one of the noise. A statistical
error occurs and the projection is not able to eliminate noise of the discrete velocity field. By increasing the
number of particle the energy of the projected noise becomes negligible against the mesoscopic energy at
all length scales. An a-posteriori validity criteria in the computation of the mesoscopic energy spectra with

added noise is introduced:

2
Eq, (k) > oq, for all k (34)

1
(np)
To resume, when obtaining continuous Eulerian fields from discrete Lagrangian quantities by projection, er-
rors are mainly due to a statistical error and to an intrinsic filtering (or spatial error) at small scales. By using a
well chosen projector (e.g. Gaussian projection) with enough of particles (more than 10 particles per cell), it is
possible to circumvent the problem in a satisfactory manner.

3.2. Validation from DPS results

Finally to validate the Gaussian projection, two DPS have been performed with 10 and 80 millions
Lagrangian particles. Particles are randomly placed in the computational domain of length 27 with the fluid
velocity at their position. Initial Lagrangian quantities are then projected with a Gaussian filter on a 64° and
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Fig. 9. Comparison of mesoscopic energy spectra measured from DPS results at the initialisation with ug‘ (t=0)=u, (xg‘) (t=0),(t=0)).
DPS with 107 or 8 x 107 particles projected on a 64> or 128 grid with the Gaussian projector.

128* node grids. For the coarser case, 10 millions of particles projected on a 64° grid cell (approximately 38
particles by cell) with a Ax equal to the computing mesh size, the projected spectrum is identical to the fluid
one for k smaller than 18 (Fig. 9). For larger value of k, the energy spectrum of the projected velocity shows an
unphysical increase but remains 10* smaller than the effective values measured in the energetic region. As
expected, Fig. 9 shows that this effect can be diminished by increasing the particle number and decreasing
the projection cell size but leading to very expansive simulation costs.

The 10 and 80 million DPS are performed. Instantaneous Lagrangian results, corresponding to a case with
large RUE intensity (=~16% of the mesoscopic energy is measured) and particle segregation effects, are ana-
lysed. The energy spectra of mesoscopic velocities obtained by projection on a 64° (Fig. 10) are nearly identical
for the two DPS results, no statistical bias is observed so that 10 million particles is sufficient to analyse mes-
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Fig. 10. Comparison of mesoscopic energy spectra measured from DPS results. DPS with 107 or 8 x 107 particles projected on a 64° or
128° grid with the Gaussian projector. Case St = 0.53 at time ¢ = 10.8. Horizontal dashed lines are the lower limit of spectrum validity
given by Eq. (35) (upper line is for cases 107 particles projected on 64> and 8 x 107 particles projected on 128 grid; lower line is for case
8 x 107 particles projected on 64° grid).
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oscopic velocity fields in term of energy spectra. Indeed, these spectra follow the one obtained by projection on
a finer grid (128%) up to the higher wave number (Fig. 10). The one-dimensional noise spectrum model (Eq.
(33)) is extended for the three-dimensional spectrum by replacing the total number of particle by the number
of particles in only one direction ({n,)Ax*N):

1
E;,p (k) > Wéqg for all £ (35)
We notice in Fig. 10 that the mesoscopic energy spectrum validity criterion (Eq. (35)) is satisfied. This criterion
is of course questionable because particle distribution is far from homogeneity and RUE is not uniform, but it
could be considered as a spectrum validity indicator. The Gaussian projector is really able to limit the intrinsic
error of the projection procedure and is used to obtain mesoscopic fields from DPS results with 10 million
particles for 64° projection cells in the rest of the paper.

4. Homogeneous isotropic decaying turbulence test case

Homogeneous isotropic turbulence is one of the classical cases where dynamics and dispersion of particle
laden flows can be studied. This has been done extensively using the DPS approach coupled with fluid turbu-
lence DNS and many results leading to improve the detailed understanding of the mechanisms occurring in
particle laden turbulent flows were obtained by such methods. Comparison of DPS + DNS results in decreas-
ing homogeneous isotropic turbulence [17] with experimental measurements of particle dispersion in grid gen-
erated turbulence [18] shows that essential features of the particle dynamics can be captured. In addition, such
approach allows to analyse the preferential concentration effect which occurs for particles with relaxation time
of the same order than the Kolmogorov time scale.

Therefore, for the sake of simplicity, the case of decaying homogeneous isotropic turbulence is studied here
to investigate the accuracy of the mesocopic Eulerian approach in predicting the particulate flows. The carrier
phase is initially supposed to have uniform density, the velocity field to be divergence free, and the kinetic
energy to follow a Passot—Pouquet spectrum [19]. After roughly one turn over time of the energy containing
eddies, the velocity field is supposed to represent a realistic turbulent flow and the dispersed phase is coupled
with the fluid flow. At the particle injection time, the Reynolds number based on the integral length scale mea-
sured from the longitudinal velocity autocorrelation function is Rep, = 13.6. For DPS initial conditions, par-
ticles are randomly and homogeneously distributed in space and the initial particle velocities are given equal to
the carrier phase velocity at the particle location. For the mesoscopic Eulerian computations, the same con-
ditions correspond to a uniform particle number density field and a mesocopic particle velocity field identical
to the carrier phase velocity field. The uncorrelated kinetic energy (RUE) field is initialized with a very small
uniform value (less than 0.02% of the mean particle kinetic energy) and is developing very quickly during the
simulation showing a weak influence of the given initial value. The spatial resolution of the gaseous phase
computation in the DPS + DNS approach is 64’ and a total of 10 million individual particles are tracked
in the computational domain.

4.1. Numerical methods

The mesoscopic Eulerian simulation is performed using a different code (AVBP [20]) then the DPS reference
solution (NTMIX [15]). AVBP offers several spatial and temporal schemes. In the present study a central sec-
ond-order spatial scheme with a second order temporal correction (Lax Wendroff) was used. Comparison to
third order Runge-Kutta time stepping showed no significant improvement of the numerical accuracy.
NTMIX uses a sixth-order spectral like scheme [21] on cartesian grids, third-order Runge-Kutta time step-
ping, and third-order Lagrange polynomial interpolation. The time step is limited in both tools by a CFL
for the carrier phase. A second CFL number based on the Eulerian cell size and the maximum particle velocity
is used for time step limitation in the DPS.The CFL criteria are fixed to 0.5 in both codes. In the Eulerian
simulation and in the Lagrangian simulation the dispersed phase is advanced with the same time step as
the carrier phase. For the investigated Stokes numbers the characteristic time scale of the particles 7, is of
one order of magnitude larger than the numerical time step. Both numerical tools use domain decomposition
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and MPI for parallel computation. For the test cases carrier phase solutions are initially identical and velocity
spectra superpose.

The carrier phase kinetic energy of the two codes are identical (Fig. 11). Furthermore, the kinetic energy
spectra at a non dimensional time of 10.8 are very similar until the Kolmogorov wave number (1/#5y) which
is 7.7 in non-dimensional units (see Fig. 12).

In the mesoscopic Eulerian simulation, the dispersed phase is computed using the same numerical method
as the carrier phase, imposing an additional limit on the time step due to particle relaxation time (t, > Ar).

Comparisons between Eulerian an Lagrangian simulation results are performed considering several particle
variables. First, Lagrangian statistical properties of the dispersed phase such as particle kinetic energy and
particle-fluid velocity correlation are investigated. Second, local instantaneous mesoscopic Eulerian fields such
as particle number density 7,, mesoscopic velocity i,;, and random uncorrelated kinetic energy 5ép fields
measured from both the Lagrangian and Eulerian simulations are compared. Finally, the mesoscopic
particle kinetic energy spectra E,(k) computed from both Lagrangian and Eulerian simulation results are
compared.
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Fig. 11. Comparison of the mean carrier phase turbulent kinetic energy ¢? computed from AVBP simulations (line) using a second-order
difference scheme with the one computed from NTMIX simulations (triangles) using a spectral like scheme [21].
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Fig. 12. Kinetic energy spectra of the carrier phase from simulations with the two numerical codes used in this study at time ¢ = 10.8.
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4.2. Spatial averaged quantities over the whole computational domain

Mean particle kinetic energy qf) and fluid-particle correlation gy, derived by spatial averaging {-} should be
identical in the two simulations and therefore constitute a first step of comparison. In the present test case of
decreasing homogeneous isotropic turbulence those quantities vary in time. The mean properties are com-
puted by averaging over the computational domain and may be written from the Eulerian simulation results
as

4t = 5 ) (36)

G, = {uritp}, (37)

3, = 5 (i), (38)
and from the DPS ones,

5 = 3y 2 ) (39)

=y 3 5! (40)
The spatial averaged uncorrelated kinetic energy (RUE) computed from DPS results is given by

502 = {60y}, (41)

with the local RUE 5ép given by Eq. (25).
4.3. Kinetic energy spectra

Using the Fourier transformed velocities of the carrier phase ir;(k) = F(ur;(x)) and dispersed phase
i, (k) = F(itp;(x)) one can construct three-dimensional fluid and particle energy spectra

Eolk) = g (KYie () (42)
E,(k) = %ﬁpﬂi(k)ﬁpﬂ,-(k) (43)

For given turbulent flow the undisturbed carrier phase kinetic energy follows the standard Kolmogorov spec-
trum. Here the interest lies on the behaviour of the spectra of the mesoscopic particle kinetic energy. In par-
ticular, whereas the carrier phase is considered incompressible, segregation effects measured in DPS show that
there must be a compressible part in the mesoscopic dispersed phase velocity spectrum. Following Kraichnan
[22], the compressible effect on the mesoscopic particle kinetic energy spectrum can be characterized by divid-
ing the spectral velocity into a compressible and an incompressible (solenoidal) component

~c KiKj .

X sz Up j (44)
~s KiKj\ .
i, = (1= "5 i (45)

This orthogonal decomposition allows to construct a compressible and a solenoidal energy spectra such that
the sum equals to the total energy spectrum

B (k) = it (0 () (46)
ES(K) = s i (b (k) (47)
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5. Simulations results and discussion

Preliminary computations with a simplified Eulerian formalism, neglecting the RUV kinetic stress terms,
gave encouraging results for the same test case [23]. In the case of tracer particles (small Stokes number limit),
the RUYV contribution tends towards zero with respect to the full particle velocity [1]and such simplified Eule-
rian approach is expected to accurately describe the particle dynamics [2,3]. Moreover, a crucial assumption of
such modelling approach, the particle velocity uniqueness, is not verified for particle Stokes number based on
Kolmogorov time scale greater than unity. Therefore, the Eulerian approach for the dispersed phase must
account specifically for the effects of crossing between the particle trajectories. In particular, this crossing
mechanism is expected to reduce the particle segregation effect induces by the interaction with the turbulent
eddies when the particle inertia is increasing. Such a mechanism is accounted for in the mesoscopic Eulerian
approach through the pressure-like term in the momentum equation due to the second-order RUV moments.
As pointed out in Section 4, Eulerian methods should be well suited to describe the particle dynamics [2] for
particle relaxation times small compared to the Kolmogorov time scale. It is therefore interesting to study how
the Eulerian description behaves outside this range. Therefore in a first step the results of DPS and the Eule-
rian model are compared for the Stokes number of Stx = 0.17. In a second step an heuristic extension of the
proposed model overcoming the numerical difficulties encountered due to massive segregation is presented and
results are compared for a Stokes number based on the macroscopic dissipative time scale of St = 0.53 accord-
ing to a Stokes number value, based on the Kolmogorov time scale, Stx = 2.2. Despite the small maximum
particulate mean Reynolds number reached in Lagrangian simulation (always <5 x 10~2), local instantaneous
particulate Reynolds number can be large when occasionally particles cross vortices and are given high speed.
Anyways, the drag force assumption is done provided that the DPS and the Mesoscopic Eulerian simulations
are computed under the same assumptions. Eulerian results presented here are obtained with the RUE trans-
port equation (Eq. (19)).

5.1. Comparison at Stx = 0.17
At Stokes numbers as small as St = 0.042 based on the dissipative time scale ©*(= ¢7/¢) the particles are

expected to follow closely the carrier phase velocity and the uncorrelated velocity contribution to the particle
dynamics is very small. In Fig. 13 the integral quantities of mesoscopic particle kinetic energy E]f,, fluid-particle
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Fig. 13. Comparison of mean mesoscopic particle kinetic energy and fluid-particle velocity correlation from DPS and Eulerian simulation
for the test case of Strx = 0.17.
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Fig. 14. Comparison of particle number density PDF measured from Lagrangian simulation with the one from mesoscopic Eulerian
simulation. Case Stx = 0.17 at ¢t = 10.8.

correlation g, of the Eulerian simulation are compared to the DPS results. Temporal evolution of particle
kinetic energy and fluid-particle correlation are well predicted by the Eulerian simulation.

RUE measured in DPS (%10_2q§) is of the same order of numerical error. Then the predicted RUE is of
two orders of magnitude lower than the mesoscopic kinetic energy, the contribution of RUE can be neglected
in this case.

Fig. 14 shows the probability to find a computational cell with a given value for the number density in the
Eulerian prediction and the DPS reference result at £ = 10.8. The distribution of the Eulerian number density
is less wide than the DPS distribution. If the mesoscopic velocity is well predicted in the Eulerian simulation, a
possible cause of the non-matching number density distributions may be the numerical scheme dispersion
leading to a more homogeneous particle number density.

As an instantaneous local quantity the normalized particle number density is shown in Fig. 15 for the x—y
plane crossing the computational domain center at the simulation time ¢ = 10.8. This corresponds to roughly
18 particle relaxation times (t,) and two dissipative times scales (t*) of the carrier phase. It shows that the
Eulerian number density prediction is quantitatively close to the DPS result. Regions with high and low par-
ticle number densities are well correlated in the two approaches.

Fig. 16 shows the total mesoscopic particle kinetic energy spectra and the compressible kinetic energy spec-
tra computed from Lagrangian and Eulerian simulation results. The mesoscopic particle kinetic energy spec-
trum follows closely the spectrum of the carrier phase at large scales. Up to the kink in the DPS energy spectra,
the spectra computed from the Eulerian Simulation match well those from the DPS. As shown in Section 3,
this kink is probably unphysical and is due to a numerical error induced by the non-homogeneous particle
distribution.

In case of small Stokes number, the mesoscopic simulation is able to predict integral quantities such as par-
ticle energy and also local quantities such as segregation. Results with Eulerian mesoscopic approach are very
similar to the ones obtained using the Eulerian equilibrium approach propose by Rani and Balachandar [3,24].

5.2. Comparison at Stx = 2.2

Preliminary tests with Stokes numbers of Sty = 2.2 failed since large segregation effects imply very stiff local
gradients in the number density distribution (shock like) that caused dispersion errors in the numerical scheme
[25]. Tests with increased Eulerian simulation grid resolution up to 256° was unsuccessful. Supposing that the
numerical resolution of the model is insufficient, several possibilities exist to circumvent this difficulty: a dif-
ferent numerical scheme using up-winding or flux limiters are clearly able to capture those strong gradients but
imply some type of numerical diffusion. For the computation of the number density in the equilibrium Eule-
rian approach with a limited Stokes number range Rani and Balachandar [3,24] use a spectral viscosity to
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Fig. 15. Comparison of the normalized particle number density /(i) measured from the Lagrangian simulation (upper graph, resolution
64°) with the one given by the Eulerian simulation (lower graph, resolution 64°) at the non-dimensional time 7 = 10.8, case Stx = 0.17. The
drawing plane is parallel to the x—y reference plane and crosses the computational domain center.

overcome this difficulty. Increasing spatial resolution increases strongly numerical cost. The origin of the pref-
erential concentration is due to the compressibility of the particle number density field. A pure diffusivity
added to the evolution of the number density field would bias the conservative transport of the particle veloc-
ity. The origin of the compressibility is the compressible component of the mesoscopic particle velocity field.
At this point it was found preferable to act on the compressible component of the mesoscopic velocity field
to circumvent the measured difficulties associated with steep gradients. This leads to compute for a modified
mesoscopic velocity Lclp,,- transport equation and consequently a modified particle number density field 72,. The
compressible component of the mesoscopic velocity is modified by introducing a subgrid bulk viscosity &,

0c ¢ 0oc = 0 - 0 ity - - 0 0 -
anpup,i + a_xjnpup,iup,j = _a_xiPQB + G_ijU - T—E(up,i - uf,i) + a_xl <§sgsa—xkup,k) (48)
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Fig. 16. Comparison of total and compressible particle mesoscopic kinetic energy spectra computed from DPS and Eulerian simulation
results for the test case with Stx = 0.17 at t=10.8.

The subgrid model has the form of a bulk viscous term ésgsﬁftk /0x;:6;; which is added to the shear viscosity term
01y, in Eq. (18). The subgrid bulk viscosity is mesh size dependent: (&g, = Cieity(Ax)*| i /Ox|). The parameter
C: in the bulk viscosity expression is fixed equal to 50 which is the smallest value allowing to run the case with
Stx = 2.2. The RUE transport equation (Eq. (19)) is not modified.

In homogeneous turbulence, the spatial average of this bulk viscous term is zero, still it acts locally and
leads to a more homogeneous number density field. Simulations have been carried out for several particle
relaxation times. The following computation with a Stokes number of Stx = 2.2 is performed with this heu-
ristically introduced bulk viscosity and compared to the DPS reference results.

5.2.1. Spatial averaged properties
Fig. 17 shows the temporal evolution of carrier phase kinetic energy, particle kinetic energy, and fluid-par-
ticle correlation. The carrier phase kinetic energy decreases due to viscous dissipation. Particle kinetic energy
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A 1/2 ™ (DPS)
v Bq; (DES)
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% —_— qh; (Euler)
N - - qp"‘ (Buler)

.“\\ —_— ~q; (Euler)
- 1/2 Ly (Euler)
Sq; (Euler)

Energy

6 8 10 12 14 16
t (non-dim)

Fig. 17. Temporal evolution of the mean fluid, particle, and fluid-particle velocity correlations from DPS (symbols) and Eulerian
simulations (lines). For the Eulerian approach the total particle kinetic energy qf] is computed as the sum of the kinetic energy due to
mesoscopic motion qg and the random uncorrelated energy 6qu. Case Stx = 2.2.
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Fig. 18. Comparison of particle number density PDF measured from Lagrangian simulation with the one from mesoscopic Eulerian
simulation. Case Stx = 2.2 at t = 10.8.

follows the carrier phase kinetic energy with a delay of the order of the particle relaxation time. Due to particle
inertia, the particle velocities become partially uncorrelated in space and the RUE begins to increase. The
behaviour of the integral quantities of mesoscopic and uncorrelated particle kinetic energy as well as the
fluid-particle correlation are well predicted by the Eulerian simulation using the transport equation for RUE.

The RUE prediction is also compared to the empirical model of Février [7]. DPS performed in stationary
homogeneous isotropic turbulence suggest that the mean uncorrelated kinetic energy 5q§, depends on the
resolved dispersed phase kinetic energy g2, the fluid-particle correlation qsp» and the carrier phase kinetic

energy weighted by the particle presence q%@p = 1/2{usu; },. This equilibrium expression is written,

w2 2
o 459ta
5‘]?) = fﬁ,( Cp]zf o 1) )

fp

After a transient time, mean RUE predicted by this model using DPS results are in good agreement with both
Lagrangian and Eulerian results for non-dimensional time ¢ > 8.6. This indicates that the flow is globally in
equilibrium, in the sense that a model designed in stationary configuration works in this unsteady flow.

Comparison of particle number density PDF is provided on Fig. 18. As expected, the Eulerian approach
underestimates particle segregation.

5.2.2. Instantaneous local mesoscopic fields

Fig. 19 shows a snapshot of number density in DPS and the Eulerian simulation in the upper and the lower
graph. The number density field shows the same kind of structures for both the Lagrangian and Eulerian sim-
ulations. In contrast, the instantaneous distribution is less heterogeneous for the Eulerian simulation due to
the heuristic bulk viscosity which reduces compressibility effects.

The heuristically introduced bulk viscous term tends to make the spatial particle number density more uni-
form. Without this bulk viscous term, Eulerian simulations can currently not be carried out: the physical par-
ticle segregation is too large as it could be resolved by the numerical scheme. Since the spatial average of the
bulk viscosity term is however zero, it does not effect the temporal evolution of the mean kinetic energy of the
random uncorrelated motion of the particles 5q§. In contrast, local instantaneous values of (3@[, may differ
notably from the values obtained in the DPS (Fig. 20).

5.3. Spectral kinetic energies
Fig. 21 shows spectra of the total kinetic energies of the dispersed phase as well as the compressible kinetic

energies measured from the DPS and Eulerian simulation. First, one remarks the high compressible compo-
nent of the kinetic energy compared to the gaseous carrier phase kinetic energy in the DPS results. This causes
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Fig. 19. Comparison of the normalized particle number density 7,/(/i,) measured from the Lagrangian simulation (upper graph,
resolution 64*) with the one given by the Eulerian simulation (lower graph, resolution 128*) (Stx = 2.2) at time (¢ = 10.8). Same cut-plane
as Fig. 15.

structures similar to those known as eddy shocklets in compressible turbulence [26]. In addition, the compress-
ible part of the energy spectrum is of the same order than the solenoidal part at small scales or large wave-
number values. The kinetic energy spectrum of the Eulerian simulation does not reflect this behaviour to
the same extend at small scales in contrast with the one measured at large scales or small wave number values.
This discrepancy between both approaches is probably due to the bulk viscosity operator which reduces dras-
tically the compressible effects at small scales.

6. Conclusion and perspectives

This study presents the numerical application of a new Eulerian approach for dispersed particles in turbu-
lent flows based on a PDF approach conditioned by the fluid flow realization [1]. Comparison against
Lagrangian simulation results are carried out for an ensemble of non-colliding particles suspended in a decay-
ing homogeneous isotropic turbulence given by DNS. The proposed mesoscopic Eulerian approach allows to
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Fig. 20. Comparison of RUE (5(;p) measured from the Lagrangian simulation (upper graph, resolution 64°) with the one given by the
Eulerian simulation (lower graph, resolution 128) after one particle relaxation (Stx = 2.2) time (¢ = 10.8). Same cut-plane as Fig. 15.

simulate the dynamics of inertial particles by accounting for the second-order moments of the particle velocity
PDF in the momentum equation. Eulerian predictions of the time dependent particle and fluid-particle veloc-
ity correlations measured by spatial averaging in the whole computational domain are in good agreement with
the Lagrangian simulation results. The compressible behaviour of the particle velocity field was pointed out,
using the kinetic energy spectra measured from Eulerian and Lagrangian simulations. Such a behaviour,
which is connected with the heterogeneous distribution of the particles, leads to peculiar difficulties for the
numerical prediction of the mesoscopic Eulerian variables. These difficulties were overcome by adding a
numerical bulk viscous term in the velocity transport equation which smooths artificially the local instanta-
neous particle number density distribution. In addition, simulations were performed at very small turbulent
Reynolds numbers, because simulations with higher Reynolds numbers of the carrier phase are found to
increase the numerical difficulties for the dispersed numerical predictions. Therefore, a more appropriate, less
dispersive, numerical scheme is under development for the computation of the particle mesoscopic fields in
order to remove the numerical bulk viscosity and to carry out simulations for higher Reynolds number values.
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Fig. 21. Comparison of particle mesoscopic kinetic energy spectra computed from Lagrangian and Eulerian simulation results for Stokes
number Stx = 2.2 at t = 10.8.

Concurrently, the mesocopic formalism is used for the development a Euler—Euler LES approach [27] for the
unsteady computations of industrial turbulent two-phase flows loaded with particles or droplets.
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